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Abstract: We propose methods to obtain the variability of model-based
reliability estimates for survey data analysis. Health questionnaires play a
role in health economics research by providing a means to collect data on
individuals’ health-related information, preferences, behaviors, and outcomes.
Model-based reliability, or coefficient omega, have become a popular concept
to estimate test score reliability for various health care and health utility
research instruments. Notably, these instruments are often embedded in data
collection for nationwide health surveys. Data analysis of survey data needs
to be capable of incorporating the survey design, where the data commonly
accompany with unequal probabilities caused by clustering and post-
stratification. Methods for estimating the variability of coefficient omega
estimates for survey data analysis have not been investigated in the statistical
literature, although it is a widely used tool to assess instrument reliability. In
this article, we discuss a generally applicable linearization scheme for the
relevant inference of such estimates based on the influence function approach
when applied to complex survey data. Through the Monte Carlo study, we
show adequate coverage rates for the confidence intervals based on scenarios
of stratified multistage cluster sampling. Using data from the Medical
Expenditure Panel Survey (MEPS), we provide the confidence intervals for
the two types of coefficient omega (i.e., omega hierarchical and omega total)
for the Short Form-12 version 2 (SF-12v2), a widely used health survey
instrument to assess quality of life, and compare reliabilities of the instrument
by different demographics.
Keywords: Coefficient omega, composite reliability, complex survey, influence
function, linearization.

1. INTRODUCTION

Health questionnaires have a significant role in health economics research
as they serve as a valuable tool for gathering data on individuals’ health-
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related information, preferences, behaviors, and outcomes (e.g., Brazier et
al., 2002). Model-based reliability evaluation has gained popularity for
assessing the test score reliability of various questionnaire instruments for
health care and health utility research (Flora, 2020; Gignac et al., 2019;
Watkins, 2017; Wiriyakijja et al., 2020). Model-based reliability, also referred
to as coefficient omega, has several definitions, but is generally explained
by the factor models with one or multiple latent factors. Many health surveys
designed for large populations include various physical/mental health
instruments, e.g., Center for Epidemiologic Studies depression scale
(Carleton et al., 2013) in the National Health and Nutrition Examination
Survey and Sheehan disability scale (Sheehan et al., 1996) in the National
Comorbidity Survey. However, inference regarding the general class of
model-based reliability has not been sufficiently addressed, particularly in
the context of complex survey data analysis, in which the data sets commonly
accompany with unequal probabilities caused by clustering and post-
stratification (Lohr, 1999). In this article, we propose the generally applicable
linearization method (Chauvet & Goga, 2018; Demnati & Rao, 2004; Deville,
1999; Yu, Chen, et al., 2019) in complex survey data analyses for model-
based reliability estimates. The linearization is applicable to any sampling
design to implement unbiased variance estimators of the Horvitz-Thompson
estimator (Demnati & Rao, 2004).

In health research on populations, questionnaires are often used as
research instruments to quantify information about study participants. These
questionnaires consist of multiple items that measure a few aspects of
constructs of interest, which often requires high reliability reflecting the
characteristics of true constructs (Bentler, 2009). Reliability is defined as the
ratio of the variance associated with the true construct over the total variance
(Raykov & Marcoulides, 2010). A large reliability value indicates that the
item responses in an instrument are not random noise in measuring a
construct, and true responses within a same individual are highly correlated
when relying on the parallel test form, or tests with same latent structures
(McNeish, 2018; Sijtsma, 2009). The formulation of items, such as phrases in
questionnaires and who received the tests, may affect instrument reliability
(Bentler, 2009; Deng & Chan, 2017). In practice, since the part of the true
construct within the scores is not observable, estimating reliability is not
straightforward even when we have data with the observed scores.

Some measures of reliability of the total score have been developed
based on administrating a single test instead of parallel test forms (Novick
& Lewis, 1967). Coefficient alpha (Cronbach, 1951) – a metric based on a
single test is known to be the average of the random split-half reliabilities.
While coefficient alpha has been a widely used measure of reliability (Heo
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et al., 2015), its limitation/misunderstanding in the interpretation has been
heavily discussed, e.g., requirement of certain assumptions such as tau-
equivalence for validity (Novick & Lewis, 1967; Sijtsma, 2009; Trizano-
Hermosilla & Alvarado, 2016) as well as a recent supporting discussion of
its usage by Sijtsma (Sijtsma & Pfadt, 2021). Some alternative reliability
metrics are available such as a series of Guttman’s lower bounds of
reliabilities (Guttman, 1945), the greatest lower bound (GLB) and model-
based reliability (Bentler & Woodward, 1980; Jackson & Agunwamba, 1977).
The GLB is shown to be equal to or larger than the alpha, while it is less
than the true reliability or the product moment correlation of two parallel
tests (Sijtsma, 2009; Zinbarg et al., 2005).

Model-based reliability, or coefficient omega (McDonald, 1981), has been
received much attentions from practitioners (Carleton et al., 2013; Flora,
2020; Watkins, 2017; Wiriyakijja et al., 2020) and an extensive list of literature
on the topic is available. Estimation of such metrics can be carried out by
readily available software, e.g., the psych package (Revelle, 2019) and
coefficientalpha package (Zhang & Yuan, 2016) in R. Coefficient omega does
not require tau-equivalence allowing varying degree of loadings from a
construct. A version of coefficient omega such as omega total (Zinbarg et
al., 2005) that accounts for all factors tends to exceed the GLB, which is
known for overcoming coefficient alpha’s underestimation of reliability
(McNeish, 2018; Revelle & Zinbarg, 2009; Sijtsma, 2009). Since its inception,
coefficient omega (McDonald, 1970) has commonly been based on single
latent factor models or unidimensional factor models (Flora, 2020). We note
that the variance and confidence interval estimates for coefficient omega
based on the one factor model are found in the extant literature (Garcia-
Garzon et al., 2021; Padilla & Divers, 2016; Zhang & Yuan, 2016). For more
general modeling schemes, variance estimation for the coefficient omega
estimate, specifically accounting for the general factor (i.e., omega
hierarchical), is available (Raykov & Zinbarg, 2011) but not in the context of
incorporating unequal probabilities caused by survey designs and post-
stratification. Overall, although coefficient omega estimation may require
to fit a multidimensional factor model (Deville, 1999; Reise et al., 2018,),
variance estimation for this general category of model-based reliability has
not been sufficiently discussed in the relevant literature.

In this article, we propose an inferential method for a general form of
model-based reliability estimates based on the influence function approach.
The influence function evaluates the effect of a change in a data point on an
estimator and can be used for nonparametric variance estimation. Recently,
it has been successfully implemented to estimate variances of many statistics
in survey data analysis (Deville, 1999; Yu, Vexler, et al., 2019).
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This article is structured as follows. In Section 2, we propose strategies
for estimating the variabilities of model-based reliability estimates in
complex surveys. In Section 3, we perform a Monte Carlo study based on
scenarios of stratified multistage cluster sampling and evaluate the
performance of the proposed methods. In Section 4, the developed methods
are used to analyze the Short Form-12 version 2 (SF-12v2) from a national
survey data sets, and the estimated reliabilities comparing different
demographics are reported. Section 5 presents the concluding remarks.

2. METHODOLOGY

In this section, we first describe a group of coefficient omega and ways to
estimate it. Then, we develop a method for estimating variability using the
influence function in survey data analyses.

2.1. Reliability Estimates

Several definitions of coefficient omega are available based on the different
latent variable model assumptions. Coefficient omega can be defined in the
context of the congeneric scale assumption, where the items are explained
by the unidimensional factor model (Kelley & Pornprasertmanit, 2016;
McDonald, 1978). Other types of coefficient omega can be obtained based
on factor models that assume multidimensionality, where coefficient omega
can be defined either by accounting for the general factor or by accounting
for the general and group factors. Commonly, the former is termed omega
hierarchical and the latter is termed omega total or simply omega (McNeish,
2018). The advantages and limitations of these different coefficient omega
definitions have been reported in several papers including Rodriquez et al.
(Rodriguez et al ., 2016), Kelly and Pornprasermanit (Kelley &
Pornprasertmanit, 2016) and McNeish (McNeish, 2018). Comparisons
between different factor model constructions show that approaches based
on higher order models or hierarchical factor models perform similarly, but
they are better than principal component based factor analysis in estimating
coefficient omega (Zinbarg et al., 2006).

We now describe the methodology development based on the general
multidimensional factor model, which is composed of a general factor and
group factors. The general factor represents a latent construct that affects
all items in the scale, whereas the group factors reflect latent constructs that
affect the subdomains of items. Confirmatory factor analysis (CFA) and the
Schmid-Leiman procedure (Garcia-Garzon et al., 2021; Schmid & Leiman,
1957) may be used for estimating parameters in the model. The former
approach is based on the likelihood function construction using the factor
model with pre-defined factors. The latter approach starts with exploratory
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factor analysis and then the factors are rotated and transformed using the
Schmid-Leiman transformation (Schmid & Leiman, 1957), in which
researchers must determine the number of factors as well as a threshold in
order to determine the meaningful group factor loadings. The Schmid-
Leiman procedure also has some limitations regarding the minimum
number of group factors or additional constraints on factor loadings (Garcia-
Garzon et al., 2021; Revelle & Condon, 2019). It is known that estimates for
general factor saturations using the Schmid-Leiman procedure “is positively
biased and that a CFA based estimate is more accurate” (Revelle & Condon,
2019) in terms of amount of general factor variance in the test scores. In this
paper, we estimate the coefficient omega values based on the likelihood
functions in the framework of confirmatory factor analyses, and provide
generally applicable solutions for the inference of the group of coefficient
omega.

Covariance relationships among different items in the factor model are
decomposed to a few underlying unobservable factors. Each item in the
response has a loading on a general factor and on some group factors. Let X
indicate p-variate random vector, and Y = X – µ. The basic structure of the
factor model (Zinbarg et al., 2006) is given as

1 1 2 2 ,pY F F DS E     

where Y is the p×1 vector of observed scores on the p scale items, F1 is a
general factor scalar – common to all p scale items, 1 = (11, ..., 1p)

T is p×1
general factor loading, F2 is a r×1 vector of group factors (i.e., factors that
are common to a subgroup of items but not all k items), 2 = (21, ..., 2r) =
((21, ..., 2p)

T, ..., (r+1,1,..., r+1,p)
T) corresponding to group factors’ factor

loadings, D is a p×p factor loading for specific factors, Sp is p×1 vector of
specific factors for each scale item with no correlation between items and E
is the p×1 vector of random errors for each item. Typically, Sp and E are
confounded and not distinguishable (Revelle & Condon, 2019; Zinbarg et

al., 2006). We let DSp + E =  and assume  Np(0p, ),  = diag 1( ,..., )p 
where Np denotes p-variate multinormal distribution, 0p indicates p-
dimension zero vector, and diag indicates a diagonal matrix. Some factor
analysis literatures call this  also the specific factors (Johnson & Wichern,
2014). In the model, unstandardized factor loadings 1 and 2 are to describe
the relationship of the observed scores with general factor and group factors,
respectively. The model assumes that all factors have the variance 1 and are

uncorrelated with each other, i.e., 1 2( , ) ~ (0, (1,...,1)),T T
mF F F N diag  where

m = r+1. The general and group factors and  are not correlated, i.e., Cov(,
F) = 0p×m, p × m zero matrix. In confirmatory factor analysis, the latent factors
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correspond to at least two items (Fan et al., 2016; Kline, 2015) for model
identifiability (Zinbarg et al., 2006). We note that some factor models used
for coefficient omega may be equivalent to the Schmid-Leiman
transformation (Schmid & Leiman, 1957), where the factor loadings for a
group factor maintain a proportionality to the factor loadings for the general
factor as known as the proportionality constraint (Gignac, 2016; Yung et al.,
1999).

The general description of omega hierarchical (h) is based on the major
common factor F1 (Revelle & Zinbarg, 2009). h is defined as

2
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1 11 1,1 1

( )
,

( ) ( )




  




  

 
 

 



   

p T T
ii

h p p p
i k i

r
yk ii i i

V
1 1

where Vy is the variance of the sum of elements in y, and 1 indicates the
vector of ones. The numerator describes the true variance of the scales
derived from the general factor F1, whereas the denominator reflects the
variances of the scales themselves. A high value of h (i.e., close to 1) suggests
that the items are highly saturated by the general factor.

The reliability coefficient can be defined by including group factors (F2)
based on the concept that the inclusion of these extra factors can explain
systematic variabilities due to content, method, or certain factors. In this
regard, omega total (t) is defined as
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A high value of t suggests high reliability of an instrument.
Comparisons between h values or between t values may allow us to

investigate characteristics of various scales and subscales as well as the same
scales applied to different demographics. For example, Gignac et al. (Gignac
et al., 2019) compare two different scales with and without certain subscales
using h. Also, comparison of h and t may provide a simple evaluation of
one-dimensionality of the scale (Green & Yang, 2015). The high similarity
of the two values provides good evidence for one-dimensionality. The
relatively low h may be indicative that the simple sum of the scores may
not be useful due to weak saturation of the general factor and multi-
dimensionality of scales (Zinbarg et al., 2007). The low h in subscales may
reveal that an independent use of subscales may be not desirable (Wiriyakijja
et al., 2020). The variance of the estimates of h and t can assist decision
making on the instrument quality comparison between different scales or
application settings.
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2.2. Influence function for survey data analysis

Now let us consider a survey sampling setting. A population index set is
defined as U = {1, ..., N} with population size N. Each unit in the population
has a value yi, i  U. A random sample S of size  is selected from U without
replacement by a sampling design p(s) = Pr{S = s} for all s  U. The sampling
scheme is based on certain population characteristics such as strata and
clusters. Let us consider the measure M having a mass 1/N in each of the
points yi, i  U indicating that each data point is equally likely to be selected
(Deville, 1999; Yu, Vexler, et al., 2019). Then, this measure leads to the

classical definitions of the probability measure 1 1dM   and the population

expectation 1 :i U iydM N y Y

    ( indicates “defined as”) (Deville,

1999; Yu, Vexler, et al., 2019). Also, we define the measure M
  to be the

estimator of M allocating a weight wi/N to any point yi and zero to any
other points.

The full likelihood function construction in survey methodology
considers the probability of sample inclusion in its construction (Lawless,
1997). Thus, the full maximum likelihood (ML) approach requires specifying
a model of the conditional distribution of the population values given the
stratum and cluster identifiers. This approach might require the stratum
identifier and the representation of clusters by random effects. The
specification of such models can be difficult, and inference cannot be robust
to misspecification (Molina & Skinner, 1992). Unlike the full ML approach,
the maximum pseudo-likelihood (MPL) approach does not require the
specification of a model of the conditional distribution of the population
values. Correlations and strata are addressed by incorporating weights in
the manner of the design-based approach. Specifically, suppose that

1
( , )N

ii
l y

 θ  the population log-likelihood function, where ( , )il y θ  is the

log of likelihood contribution of iy  andθ is the parameter of interest. The

idea of MPL is that it estimates the population log-likelihood function in

the weighted form ( ) ( , ),i ii s
w D l y

 θ  where ( )iw D  is the i-th observation

weight corresponding to the survey design D . This can be understood as a
design-consistent estimator of the log-likelihood function based on the
Horvitz-Thompson estimator (Krieger & Pfeffermann, 1992; Wang, 2021).

The MPL estimator 
 
θ̂  is obtained by satisfying ( ) ( , ).i ii s

a w D l yrg max
θ

θ
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Under appropriate regularity conditions, 
 
θ̂  is consistent for θ and

asymptotically normally distributed (Lawless, 1997). Our development of
the coefficients’ inference via the influence function is based on the MPL
approach that simplifies the computational complexities and can be applied
to a wide class of multivariate models and various survey designs. The
variance estimation of the MPL estimator needs to be carried out by standard
survey sampling procedures such as the linearization method (Molina &
Skinner, 1992).

The influence function (IF) is obtained by contaminating the underlying
distribution by an increment of a point mass, thus reflecting the effect of a
change in a data point on the target parameter. The influence function
technique is useful in studying model robustness and calculating variance-
covariance matrices of certain types of estimators, especially when more
straightforward methods are difficult to implement. In survey methodology,
the influence function technique is used as a linearization technique, a
standard technique to estimate the variance of a statistic incorporating first
and second-order inclusion probabilities (Deville, 1999).

Suppose that a twice differentiable objective function to maximize is

l(y,). Maximization is carried out by solving [ ( , )] ( , ) 0,E l y l y dM     
where 


 is the vector derivative with respect to  and it is understood that

the equation is satisfied at each element of the vector. The distribution
perturbed by  produces the equation (1 ) [ ( , )] ( , ) 0E l y l y        

(Kahn, 2015) and  is influenced by the perturbed distribution. Taking
the derivative of the equation with respect to  produces the relationship

[ ( , )] (1 ) [ ( , )] ( , ) ( , )E l y E l y l y l y   

 
     

 

 
        

 

(


 indicates the second derivative with respect to ). Letting = 0 and
solving for / gives the IF of in the following form

-1( ) [ ( , )] ( , ).  IF E l y l yθθ θθ θ θ

Now, suppose that I Fn,i () (i  s) is the empirical influence value based
on a sample of observed data. Then, the variance can be estimated in the

manner of estimating the quantity ( ( ))nVar IF   (Yu, Vexler, et al., 2019),

where ( )nIF   indicates the sample mean of IFn,i () (i  s). When the parameter
of interest is a joint function of  (say f()), the IF is obtained using the
functional delta method as
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( ( )) ( ) / ( )IF f f IF   θ θ θ θ
where f is a differentiable function defined on the space of values for 
(Deville, 1999).

Based on the model , we have S  = T +  , where

1 2[ , ] [ ], 1,..., , 1,..., dim( ).ij i p j F        Let  = (, ), the parameters
to be estimated. Using the model , the expectation of the objective function
(i.e., log-likelihood function) of observed data for the factor analysis can be
defined as

    -1( , ) - log 2 log | | [ ],1 1
2 2




     i U
E tr S

N
l y pθ

where /T
i U i iS y y N  (Yu, Vexler, et al., 2019). Using the pseudo-likelihood

approach, the log-likelihood function of observed data y for the factor
analysis corresponding to E (l(y, )) is

 1

 
ˆ( , ) log 2 | | [ ] ,1

2ii S
l w p l

N
og tr S 


     y θ

where iw  is i-th observation weight corresponding to the survey design

and Ŝ  is the estimator of population covariance. For the influence function,
we need to evaluate the first and second derivatives of the objective function.
It should be noted that, if i (  -th element of ) is a known fixed value,

2( , )/ ( , )/ 0.i i jl y l y            Then, for  ( , ),l y   we have

-1 -1 -1( , ) - ( - ),Tl yvec vec yy 
      

 

θ

-1 -1 -1( , ) 1 ( - ) ,
2

( )Tl yvec vec diag yy 
    

 

θ

where vec indicates the column-wise vectorization of a matrix. For

 ( , ) ,E l y   we have

2
1 1 1 1 1 1 1( , ) 1 ( ) ,
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jk jk jk jk jk

l yE S S S
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
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2
1 1 1 1( , ) 1 ,1
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l yE d S Siag
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θ

where j = 1, ..., p, k = 1, ..., dim(F). We note that similar derivations of the
second derivatives of the log-likelihood function are also found in (Kwan
& Fung, 1998). In each observation, the corresponding influence function is

1
ˆ( ) [ ( , )] ( , )] : ( , ) , ,T

i i i iIF E l y l y I I i s   
  

 
      where vectors I

i  and

I
i correspond to influence functions of and , respectively. For empirical

influence values, E [–


l(y, )] can be replaced by the observed Fisher
information matrix. Let (I*

i (i  s) indicate the matrix where each element
consists of the IF corresponding to the element of = [1, 2]. Also, let 1
indicate p-dimensional vector of 1. Then, we have the following IF of t.

Proposition 1. Under the factor model , the IF of  corresponding to
each individual is expressed as

 *
, 2

1 2 ) , .(
( )( )t

T T T T T
i i iT T

TI I I i U       
 

1 1 1 11
1

1 1
1

The proof of Proposition 1 is found in the Appendix. The IF involves
factor loadings and unique factors, thus its estimation requires to replace
those parameters by corresponding estimates to obtain the empirical
influence values (Davison & Hinkley, 1997). The IF of  can be obtained in
a similar manner.

Proposition 2. Under the factor model , the IF of  corresponding to
each individual is expressed as

 *
, 1 1 12

1 2 , ,
( )( )h

T TT T T
i i iT T

I B I I i U       
  

1 1 1 11
1 1

Where 2 2 1 2[1 1 1 1, 1 11 ]TT T T TB          and *
iI is the IF vector

corresponding to 1.
The proof of Proposition 2 is similar to that of Proposition 1, thus

omitted.
Although we discuss the IF of coefficient omega in terms of multi-factor

models, the IF for omega coefficient based on the unidimensional factor model
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(say, ) (Garcia-Garzon et al., 2021; Zhang & Yuan, 2016) can be easily
implemented based on the method we discussed. Suppose a one-factor model:

Y F   

where  is the p×1 factor loading vector, F ~ N(0, 1) is the common factor

scalar and ~ (0, )pN  , Cov(, F) = 0. Based on this setting, we have the IF as

follows similar to Propositions 1 and 2.
Proposition 3. Under the factor model , the IF of  corresponding to

each individual is expressed as

 , 2

1 2 2 ( ) , .
( )

( )( )m

T T T T T T T T
i i iT T

I I I i U            
  

1 1 1 1 1 1 1 1
1 1

The variance of omega coefficient is estimated as the variance of the
sample mean of the influence function based on the variance estimator of
the Horvitz-Thomson estimator (e.g., Sen-Yates-Grundy formula (Lohr,
1999)) or the Hansen-Hurwitz estimator (Hansen, 1953) as an approximation
of the former. Standard survey software packages (e.g., survey package in
R) (Lumley, 2011) provide the variance estimate of the sample mean
incorporating complex survey designs. Relevant R codes are available from
the authors upon request. Commonly, the Wald type confidence interval is
obtained using the variance estimates in survey data analyses (Cochran,
1977; NHANES, 2018). The performance of the confidence interval is
investigated in the next section.

3. SIMULATION STUDIES

We perform a Monte Carlo study (1000 simulations per scenario) based on
several scenarios of data structures and sample sizes to assess the
performance of the influence function methods in estimating the variance
of omega coefficients in complex survey settings in R. In the simulation, we
first generate a finite population with strata and clusters, and then we
conduct stratified two-stage cluster sampling. In each stratum (a total of
three strata), we construct 500 primary sampling units (PSUs) with common
covariance (0.05 throughout the scenarios) within PSUs and 100 secondary
sampling units (SSUs) per PSU following the factor model , totaling 150,000
SSUs. For each sample, we conduct simple random sampling in each stratum
in the first-stage and in the second-stage.

Both multivariate normal data and correlated ordinal data are
considered in the population generation. In the multivariate normal
distribution, the data X = Y + µh are generated on the model structure
described in using a covariance matrix implied by the model parameters,
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where different values of µh(h = 1, 2, 3) are applied for different strata similar
to the structure of the one-way ANOVA model. We consider three bifactor
models (Yung et al., 1999): (i) 8 items (p = 8) with one general factor and two
group factors (each group factor corresponds to four non-overlapping items),
(ii) 12 items (p = 12) with one general factor and three group factors (each
group factor corresponds to four non-overlapping items) and (iii) the same
structure as the model in (ii) with the proportionality constraint between
general and group factors as described in Section 2. In the simulation, true
omega coefficients are known based on the definitions and . The structure
of these models are shown in Figure 1. To generate the ordinal data with
correlations between items, we first generate the multinormal data with
the same structures described above and then discretize them into 0, 1, 2
and 3 so that the distribution of the categorized data is approximately 22%,
8%, 20%, and 50% for 0, 1, 2 and 3, respectively. This discretization changes
the covariance structure and true factor loadings, thus altering true
coefficient omega values. Since we assume that the population for the survey
is finite, the population coefficient omega values can be obtained from the
generated finite population. Using the generated population, we first obtain
the factor loadings and specific variances based on the bifactor model, and
then we obtain the population coefficient omega values. The weight for
each individual (SSU) in each stratum h is (NhMh)/(nhmh) where Nh is the
number of PSUs per stratum, Mh is the number of SSUs per PSU, nh is the
first-stage sample size per stratum and mh is the sample size in the second
stage. Nonzero factor loadings are resulting in varying levels of coefficient
omega values where these values mimic our real data analysis, which is
described in Section 4.

Tables 1 and 2 show the coverage rates and average widths of the
confidence intervals using the proposed IF approach for t and h,
respectively. The coverage rate is computed as the percentage of simulation
runs where the interval contained the true coefficient omega value. As
shown in both tables, the results of the proposed influence function method
show that the coverage rates were close to the target confidence level in
both multi-normal distributions and correlated ordinal data. When the
sample size is increased, the width of the confidence interval became
narrower, indicating lower variability in the coefficient omega estimates.
We conclude that the influence function method satisfactorily provides
confidence intervals of coefficient omega at specified confidence levels.

4. APPLICATION

In this section, we provide a detailed description of our data set and report
coefficient omega estimates based on the whole data and some subgroups.
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It is possible that different demographic groups (the people taking the test
(Revelle & Condon, 2019)) may show different levels of general factor
saturation of instruments. A relatively low reliability in a certain group
would indicate more variability within questionnaire items than variability
of the constructs of interest. On the other hand, a low general factor
saturation may indicate that there may be a large distinction in responses
between subscales. These estimates may reflect some characteristics of the
composition of the participants in the group (Bentler, 2009).

4.1. The Data

We use data on the Short Form-12 version 2 (SF-12v2) from the Household
Component of the Medical Expenditure Panel Survey (MEPS-HC) in 2015
and 2016. The MEPS, which is administered by the Agency for Healthcare
Research and Quality, is a national survey that represents the health of the
non-institutionalized adult population in the US. The MEPS consists of
panels that encompass two years in five rounds of mail surveys and/or
interviews. To compose the panels, households are chosen annually from
the households that participated in the National Health Interview Survey
in the previous year. The Household Component (HC) is a prominent
constituent of the MEPS data. The HC gathers information from individual
household members regarding general demographics, disease states, overall
health status, insurance coverage, charges and payments, employment,
income, use of and access to healthcare, as well as satisfaction with
healthcare.

The SF-12, which is composed of 12 questions, is a widely-used health
survey to assess self-reported health-related quality of life. The SF-12v2
(Montazeri et al., 2011) is an improved version of the original SF-12. The
instrument consists of two areas: physical health and mental health (Ware
Jr et al., 1996). The area on physical health focuses on participants’ general
overall health, limitations in mobility, work, and other physical activities as
well as limitations due to pain. The corresponding scales include general
health (GH, one item), physical functioning (PF, two items), role physical
(RP, two items), and bodily pain (BP, one item). The area on mental health
encompasses limitations in social activity, emotional state, and level of
distraction. The corresponding scales include a physical health summary
and vitality (VT, one item), social functioning (SF, one item), role emotional
(RE, two items), and mental health (MH, two items). In the data analysis,
following the common practice (Hays et al., 1993; Kathe et al., 2018), each of
coded scores in the SF-12v2 is converted to values ranging from 0 to 100,
and inverse-coded scores are corrected so that 100 indicates the best health
condition.
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The SF-12v2 data are collected in the second and/or fourth rounds in
the two-year time span and are included in the Longitudinal File in the
2015–2016 MEPS-HC. The majority of the participants in the second round
have SF-12v2 data, which are the primary data used in our analysis. When
the data are missing in the second round, we use the data collected in the
fourth round. The Longitudinal file provides a weight variable (LONGWT)
and design variables (sampling strata: VARSTR, primary sampling units:
VARPSU) to produce national estimates based on the data (Cohen et al.,
2009). The data set has a total of 165 strata (VARSTR value 1001-1165), which
are broken down by state and employment size. Each stratum includes three
counties as the primary sampling units (VARPSU value 1-3), totaling 495
PSUs. The proper usage of these variables produces estimates of the civilian
noninstitutionalized population for the entire two-year period from 2015–
2016. To obtain estimates of coefficient omega and their variances using
IFs, we take into account the complex sample design of the MEPS by
incorporating these variables. The final data set contains some missing data
(31.66%). Weights are adjusted for missing data within each stratum based
on nonresponse weight adjustment (Lohr, 1999).

We use the bifactor model as described in Figure 2, which includes one
general factor and two group factors, where the two group factors
correspond to the physical health scales and mental health scales,
respectively as the instrument is originally designed to estimate (Ware Jr et
al., 1996). Initial values used to maximize the likelihood function are selected
based on loadings and specific variance estimates from the exploratory factor
analysis. A domain analysis (Lumley, 2011) is applied to the subgroups (i.e.,
sex and age groups), in which the weights are adjusted to be 0 for individuals
not in the domain while the original weights are kept for individuals in the
domain.

4.2. Results

Based on the whole data set, the estimate of t is 0.938 (confidence interval:
0.931~0.945) and that of h is 0.888 (confidence interval: 0.870 ~ 0.906)
indicating that overall variability is well explained by the general factor
and common factors. As expected, t shows a larger value than h, i.e.,
throughout the estimates, t is about 5% larger than h. The difference
between t and h implies an existence of latent variables representative of
certain domains within test items (Revelle & Zinbarg, 2009). In the SF-12v2,
a high saturation of the general factor represented by the high h is indicative
of closer associations between mental and physical health statuses. Some
differences between h and t in the SF-12v2 are reasonable, considering
that the questionnaire has two subdomains.
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In the subgroup analysis, the estimates of t have a range of 0.89 ~ 0.94
and the estimates of h have a range of 0.84 ~ 0.90. We use 95% confidence
intervals to check that there is a noticeable difference between two
subgroups. We observe little difference in the coefficient omega estimates
between males and females. However, relatively small coefficient omega
estimates in the young ( 30) age group are shown. In both t and h, the
coefficient omega estimates in the young (30) age group are significantly
lower than those in the older (>30) age group (significance level of 5%). The
lower t and h indicate that variability explained by the common factors is
slightly compromised among the young age group compared to the group
over 30 years old suggesting proportionally more random variance in
response by the young group compared to the older age groups. In terms of
differences between t and h, no particular subgroups show substantially
large differences between t and h.

5. CONCLUDING REMARKS

In this paper, we explained how to obtain the IFs to estimate the variability
in the general group of model-based reliability metrics which was based on
the factor models. We also show how to implement the IF to estimate the
variability in such estimates in complex survey settings, where the proper
weights of individual observations need to be considered. Through the
Monte Carlo study, the proposed approach showed the workable property
to carry out an inference of coefficient omega incorporating the survey
design. By applying these methods to the SF-12v2 data set from the MEPS,
we demonstrated that the proposed methods were useful to compare
coefficient omega values as characteristics of response patterns in the groups
of interest.

We conclude that the IF approach has a feasible inferential property.
The viable inferential property of the proposed approach made it possible
to compare model-based reliability values between different groups. We
consider that such comparisons can be useful in constructing or modifying
survey instruments that target specific groups of interest.

Conflict of interest: The authors declare that they have no conflict of
interest.
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The proof of Proposition 1. We express  in the equation (3) as
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Table 1: The coverage rates (CR) and confidence interval widths (95% confidence level) of t
based on the IF method (Proposition 1). The values of npsu and nssu are the sample sizes for

PSUs and SSUs within a PSU, respectively. Three t values in the column t are the population
t values for instruments of 8 items (p = 8), 12 items (p = 12) and 12 items with the

proportionality constraint (p = 12 with prop.), respectively

Distribution (npsu,nssu) t p=8 p=12 p=12 with prop.
CR Width CR Width CR Width

Multi- 10,20 0.909, 0.894, 0.915 0.940 0.048 0.935 0.025 0.937 0.019
normal 20,20 0.909, 0.894, 0.915 0.951 0.028 0.939 0.017 0.947 0.014
Ordinal 10,20 0.883, 0.883, 0.895 0.962 0.088 0.953 0.046 0.938 0.024

20,20 0.864, 0.881, 0.895 0.969 0.047 0.955 0.027 0.947 0.017

Table 2: The coverage rates (CR) and confidence interval widths (95% confidence level) of h
based on the IF method (Proposition 2). The values of npsu and nssu are the sample sizes for

PSUs and SSUs within a PSU, respectively. Three h values in the column h are the population
h values for instruments of 8 items (p = 8), 12 items (p = 12) and 12 items with the

proportionality constraint (p = 12 with prop.), respectively

Distribution (npsu,nssu) p=8 p=12 p=12 with prop.
CR Width CR Width CR Width

Multi- 10,20 0.891, 0.902, 0.890 0.941 0.038 0.945 0.029 0.949 0.030
normal 20,20  0.891, 0.902, 0.890 0.942 0.035 0.942 0.020 0.951 0.021
Ordinal  10,20  0.881, 0.883, 0.886 0.948 0.048 0.935 0.038 0.947 0.036

20,20  0.880, 0.884, 0.885 0.945 0.036 0.949 0.026 0.948 0.025

Table 3: Estimates of t of SF-12v2 from MEPS, 95% confidence intervals (CI), and
the number of sample (n) for the whole data and subgroups

Group CI n

Total 0.938 0.930, 0.945 11629
Sex

Female 0.939 0.932, 0.947 6249
Male 0.936 0.927, 0.945 5380

Age group
Age<=30 0.890 0.879, 0.901 2894
Age>30 0.940 0.937, 0.944 8696

Table 4: Estimates of h of SF-12v2 from MEPS, 95% confidence intervals (CI), and
the number of sample (n) for the whole data and subgroups

Group CI n

Total 0.888 0.870, 0.906 11629
Sex

Female 0.887 0.871, 0.904 6249
Male 0.888 0.871, 0.905 5380

Age
Age<=30 0.843 0.821, 0.864 2894
Age>30 0.897 0.881, 0.912 8696
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Figure 1: Schematic of data simulations based on multinormal distribution
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Figure 2: The structure of the bi-factor model of SF-12v2. “G” indicates the general
factor and “F1” and “F2” indicate the physical component score

(PCS) and mental component score (MCS), respectively


